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Analytical inversion of general tridiagonal matrices
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Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD,
UK

Received 19 June 1997

Abstract. In this paper we give a complete analysis for general tridiagonal matrix inversion
for both non-block and block cases, and provide some very simple analytical formulae which
immediately lead to closed forms for some special cases such as symmetric or Toeplitz tridiagonal
matrices.

1. Introduction

The need to find the inverse of tridiagonal matrices arises in many scientific and engineering
applications. This problem has been investigated for a few decades with an attempt to find
a simple and explicit analytic expression for the inverse. However, most of their efforts
ended up with formulae for some special cases where the tridiagonal matrix is symmetric
Toeplitz, see [1, 7] for example, or some fairly sophisticated formulae that rely on some
strict requirements such as that all the entries of the lower/upper diagonals must not be zero,
see [5, 3, 6] for example. For a review of the symmetric tridiagonal matrix inverse please
refer to [4]. In this paper, we relate general tridiagonal matrix inversion to second-order
linear recurrences and provide a set of very simple analytical formulae for both scalar and
block cases. These formulae can immediately lead to closed forms for certain tridiagonal
matrices such as general (block) Toeplitz tridiagonal matrices. The properties of the inverse
are also discussed. To our knowledge, this is the first complete analysis for the general
tridiagonal matrix inversion problem.

The paper is organized as follows. In section 2, we give an analytical formula for a
general scalar tridiagonal matrix inversion and discuss some properties of the inverse. In
section 3, the result is applied to the case of a general Toeplitz tridiagonal matrix and a
closed-form expression for the inverse is obtained. In section 4, a formula for a general
block tridiagonal matrix is presented. An extension to the block Toeplitz case is given in
section 5. Part of the proof of the results have appeared in [2] and are included in the
appendix.

† E-mail address: Yuguang.Huang@comlab.ox.ac.uk
‡ E-mail address: Bill.McColl@comlab.ox.ac.uk
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2. Non-block case

We consider the inverse of a tridiagonal matrix

A =



b1 c1

a2 b2 c2
. . .

. . .
. . .

aj bj cj
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn


.

2.1. Main results

Theorem 2.1.Define the second-order linear recurrences

zi = bizi−1− aici−1zi−2 i = 2, 3, . . . , n (1)

wherez0 = 1, z1 = b1, and

yj = bjyj+1− aj+1cjyj+2 j = n− 1, n− 2, . . . ,1 (2)

whereyn+1 = 1, yn = bn. The inverse matrixA−1 = {φi,j } (16 i, j 6 n) can be expressed
as

φj,j = 1

bj − aj cj−1
zj−2

zj−1
− aj+1cj

yj+2

yj+1

(3)

wherej = 1, 2, . . . , n, a1 = 0, cn = 0 and

φi,j =


−ci zi−1

zi
φi+1,j i < j

−ai yi+1

yi
φi−1,j i > j .

(4)

Proof. See appendix A. �

Corollary 2.1. The inverse matrixA−1 = {φi,j } can be expressed as

φj,j = 1

bj − aj cj−1
zj−2

zj−1
− aj+1cj

yj+2

yj+1

wherej = 1, 2, . . . , n, a1 = 0, cn = 0 and

φi,j =


(−1)j−i

( j−i∏
k=1

cj−k

)
zi−1

zj−1
φj,j i < j

(−1)i−j
( i−j∏
k=1

aj+k

)
yi+1

yj+1
φj,j i > j .

(5)

Theorem 2.2.The inverse of the tridiagonal matrixA can be computed inn2 + 7n − 7
arithmetic operations.

Proof. See appendix B. �
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2.2. Properties of the inverse matrix

From theorem 2.1, we can easily obtain the following results.

Theorem 2.3.If any element of the lower-diagonal ofA is zero, i.e. ifak = 0 (26 k 6 n),
then

φi,j = 0 wherei = k ∼ n, j = 1∼ k − 1. (6)

If any element of the super-diagonal ofA is zero, i.e. ifck = 0 (16 k 6 n− 1), then

φi,j = 0 wherei = 1∼ k, j = k + 1∼ n. (7)

Lemma 2.1.If A is strictly diagonally dominant, i.e.|bi | > |ai | + |ci | for all 1 6 i 6 n,
then

|zi | > |cizi−1| i = 1, . . . , n (8)

and

|yj | > |ajyj+1| j = n, . . . ,1. (9)

Proof. We use induction oni.
When i = 1, (8) holds since

|z1| = |b1| > |c1z0| = |c1|.
Suppose (8) holds for all 16 i 6 k − 1< n− 1, then we have

|zk| = |bkzk−1− akck−1zk−2|
> |bk||zk−1| − |ak||ck−1zk−2|
> |bk||zk−1| − |ak||zk−1|
> |ck||zk−1|.

Thus (8) holds for all 16 i 6 n. Similarly, we have|yj | > |ajyj+1| for all 16 j 6 n. �

Theorem 2.4.If A is strictly diagonally dominant, i.e.|bi | > |ai | + |ci | for all 1 6 i 6 n,
then theorem 2.1 will not break down.

Proof. All we need to do is to showzi 6= 0, yi 6= 0 andbj − aj cj−1
zj−2

zj−1
− aj+1cj

yj+2

yj+1
6= 0

for all 16 i 6 n.
From lemma 2.1, since|z1| = |b1| 6= 0, it is obvious that|zi | > 0 for all 1 6 i 6 n.

Similarly, since|yn| = |bn| 6= 0, we have|yj | > 0 for all 16 j 6 n. Also, we have∣∣∣∣bj − aj cj−1
zj−2

zj−1
− aj+1cj

yj+2

yj+1

∣∣∣∣ > |bj | − ∣∣∣∣aj cj−1
zj−2

zj−1

∣∣∣∣− ∣∣∣∣aj+1cj
yj+2

yj+1

∣∣∣∣
> |bj | − |aj | − |cj | > 0.

Thus the theorem holds. �

In general, we have the following theorem.
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Theorem 2.5.If the tridiagonal matrixA satisfies any one of the conditions below, then
theorem 2.1 will not break down.

(i) ai 6= 0 (i = 2 ∼ n), cj 6= 0 (j = 1 ∼ n− 1) and|bi | > |ai | + |ci | (i = 1 ∼ n), and
there exists at least onej (16 j 6 n) such that|bj | > |aj | + |cj |.

(ii) bi > 0 (i = 1∼ n) or bi < 0 (i = 1∼ n), andai+1ci 6 0 (i = 1∼ n− 1).
(iii) bi > 0 (i = 1 ∼ n) or bi 6 0 (i = 1 ∼ n) with b1, bn 6= 0, andai+1ci < 0

(i = 1∼ n− 1).

Proof. These can be proved by induction, in a manner similar to theorem 2.4. �

Theorem 2.6.If A is strictly diagonally dominant, then the sequenceφi,j is a strictly
increasing function ofi for i < j , and a strictly decreasing function ofi for i > j .

Proof. This conclusion can be drawn easily from theorem 2.4 and lemma 2.1. �

3. An example

As a simple example, we consider a general Toeplitz tridiagonal matrixT ,

T =



1 −u
−l 1 −u

. . .
. . .

. . .

−l 1 −u
. . .

. . .
. . .

−l 1 −u
−l 1


. (10)

For this matrix, we have the following theorem.

Theorem 3.1.The inverse ofT can be expressed in the following explicit way:

(T −1)i,j =
(λi+ − λi−)(λn−j+1

+ − λn−j+1
− )

(λ+ − λ−)(λn+1
+ − λn+1

− )
uj−i i < j (11)

(T −1)i,j = (λ
j
+ − λj−)(λn−i+1

+ − λn−i+1
− )

(λ+ − λ−)(λn+1
+ − λn+1

− )
li−j i > j (12)

where

λ+ = 1+√1− 4lu

2
λ− = 1−√1− 4lu

2
. (13)

Proof. According to theorem 2.1, we have:

z0 = 1 z1 = 1 zi = zi−1− luzi−2 i = 2, . . . , n (14)

and

yn+1 = 1 yn = 1 yj = yj+1− luyj+2 j = n− 1, . . . ,1. (15)

It is obvious that

yj = zn+1−j j = 1, . . . , n.
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It can be shown thatzi can be expressed as

zi = β0λ
i+1
+ + β1λ

i+1
− (16)

whereλ+ andλ− are the roots of the quadratic equationλ2− λ+ lu = 0.

λ+ = 1+√1− 4lu

2
λ− = 1−√1− 4lu

2
.

From the initial conditionsz0 = z1 = 1, we haveβ0 = −β1. Hence (16) becomes

zi = β0(λ
i+1
+ − λi+1

− ). (17)

Now, we have

zi−2

zi−1
= λi−1

+ − λi−1
−

λi+ − λi−
(18)

yi+2

yi+1
= zn−i−1

zn−i
= λn−i+ − λn−i−
λn−i+1
+ − λn−i+1

−
. (19)

Combine (18) and (19) with theorem 2.1, we have

(T −1)i,i = 1

1− lu
(
λi−1
+ −λi−1

−
λi+−λi− +

λn−i+ −λn−i−
λn−i+1
+ −λn−i+1

−

)
= 1

1− λ+λ−
(
λn+−λn−i+1

+ λi−1
− −λi−1

+ λn−i+1
− +λn−+λn+−λi+λn−i− −λn−i+ λi−+λn−

λn+1
+ −λi+λn−i+1

− −λi−λn−i+1
+ +λn+1

−

)
= 1

1− λ+λ−
(

2λn+−λn−i+ λi−1
− (λ++λ−)−λi−1

+ λn−i− (λ−+λ+)+2λn−
λn+1
+ −λi+λn−i+1

− −λi−λn−i+1
+ +λn+1

−

)
= 1

1− λ+λ−
(

2λn+−λn−i+ λi−1
− −λi−1

+ λn−i− +2λn−
λn+1
+ −λi+λn−i+1

− −λi−λn−i+1
+ +λn+1

−

)
= (λi+ − λi−)(λn−i+1

+ − λn−i+1
− )

λn+1
+ − λi+λn−i+1

− − λi−λn−i+1
+ + λn+1

− − 2λn+1
+ λ− + λn−i+1

+ λi− + λi+λn−i+1
− − 2λ+λn+1

−

= (λi+ − λi−)(λn−i+1
+ − λn−i+1

− )

(λ+ − λ−)(λn+1
+ − λn+1

− )
. (20)

From (20) and corollary 2.1, it is obvious that equations (11) and (12) hold. �

3.1. Discussion

Based on theorem 3.1, we now discuss three cases.

Case 1.lu = 1
4.

If lu = 1
4, from (13) we haveλ+ = λ− = λ = 1

2. For anyi > 0 we have

λi+ − λi− = (λ+ − λ−)
i−1∑
k=0

(λk+λ
i−1−k
− ) = (λ+ − λ−)iλi−1. (21)



7924 Y Huang and W F McColl

Substituting (21) into (11) and (12), we have

(T −1)i,j = i(n− j + 1)

2(n+ 1)

(u
l

)(j−i)/2
i < j (22)

(T −1)i,j = j (n− i + 1)

2(n+ 1)

(
l

u

)(i−j)/2
i > j. (23)

Case 2.lu < 1
4.

If lu < 1
4, then 1− 4lu > 0, λ+ andλ− are both real numbers. If we set

λ+ = 1+√1− 4lu

2
= γeθ (24)

λ− = 1−√1− 4lu

2
= γe−θ (25)

then from (24) and (25) we have

2γ coshθ = 1

and

γ 2 = 1+√1− 4lu

2

1−√1− 4lu

2
= lu.

Hence

2
√
lu coshθ = 1. (26)

For anyi > 0 we have

λi+ − λi− = γ ieiθ − γ ie−iθ = 2γ i sinhiθ = 2(lu)i/2 sinhiθ . (27)

Substituting (27) into (11) and (12), we have

(T −1)i,j = sinhiθ sinh(n− j + 1)θ

sinhθ sinh(n+ 1)θ

(u
l

)(j−i)/2
i < j (28)

(T −1)i,j = sinhjθ sinh(n− i + 1)θ

sinhθ sinh(n+ 1)θ

(
l

u

)(i−j)/2
i > j (29)

whereθ is defined in (26).

Case 3.lu > 1
4.

If lu > 1
4, then 1− 4lu < 0, λ+ andλ− are both complex numbers. If we set

λ+ = 1

2
+
√

4lu− 1

2
i = γeiθ (30)

λ− = 1

2
+
√

4lu− 1

2
i = γe−iθ (31)

where i= √−1. From (30) and (31) we have

2γ cosθ = 1

and

γ 2 =
(

1

2
+
√

4lu− 1

2
i

)(
1

2
+
√

4lu− 1

2
i

)
= lu.

Hence

2
√
lu cosθ = 1. (32)
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For anyi > 0 we have

λi+ − λi− = γ ieiθ − γ ie−iθ = 2γ i siniθ = 2(lu)i/2 siniθ . (33)

Substituting (33) into (11) and (12), we have

(T −1)i,j = siniθ sin(n− j + 1)θ

sinθ sin(n+ 1)θ

(u
l

)(j−i)/2
i < j (34)

(T −1)i,j = sinjθ sin(n− i + 1)θ

sinθ sin(n+ 1)θ

(
l

u

)(i−j)/2
i > j (35)

whereθ is defined in (32).

This completes our discussion about general Toeplitz tridiagonal matrix inversion. It is
straightforward to show that the result in [1] is a special case of our formula.

4. Block case

We now extend our algorithm to the block tridiagonal case where

A =



B1 C1

A2 B2 C2
. . .

. . .
. . .

Aj Bj Cj
. . .

. . .
. . .

An−1 Bn−1 Cn−1

An Bn


andAj , Bj andCj arem×m matrices.

Theorem 4.1.Define the second-order block recurrences

CiZi = BiZi−1− AiZi−2 i = 2, 3, . . . , n (36)

whereZ0 = I , Z1 = C−1
1 B1 and

AjYj = BjYj+1− CjYj+2 j = n− 1, n− 2, . . . ,1 (37)

whereYn+1 = I , Yn = A−1
n Bn. The inverse matrixA−1 = {8i,j } (1 6 i, j 6 n) can be

expressed as

8j,j = (Bj − AjZj−2Z
−1
j−1− CjYj+2Y

−1
j+1)

−1 (38)

wherej = 1, 2, . . . , n, A1 = 0, Cn = 0 and

8i,j =
{
−Zi−1Z

−1
i 8i+1,j i < j

−Yi+1Y
−1
i 8i−1,j i > j .

(39)

Proof. Consider thej th block column of the inverse matrixA−1. We have

B1 C1

A2 B2 C2
. . .

. . .
. . .

Aj Bj Cj
. . .

. . .
. . .

An−1 Bn−1 Cn−1

An Bn





81,j
...

8j−1,j

8j,j
8j+1,j
...

8n,j


=



0
...

0
I

0
...

0


. (40)
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For i < j , we use induction oni.
Basis step. Wheni = 1, the first equation of (40) is

B181,j + C182,j = 0

from which we have

81,j = −B−1
1 C182,j = −Z0Z

−1
1 82,j .

Equation (39) holds.
Induction step. We assume equation (39) holds for alli in the interval 0< i 6 k−1<

j − 1, then fori = k − 1, we have

8k−1,j = −Zk−2Z
−1
k−18k,j . (41)

Also, from thekth equation of (40), we have

Ak8k−1,j + Bk8k,j + Ck8k+1,j = 0.

Substituting the8k−1,j in the above equation using (41), we have

Ak(−Zk−2Z
−1
k−1)8k,j + Bk8k,j + Ck8k+1,j = 0

or

8k,j = −(Bk − AkZk−2Z
−1
k−1)

−1Ck8k+1,j . (42)

From equation (36) we have

Ck = BkZk−1Z
−1
k − AkZk−2Z

−1
k

= BkZk−1Z
−1
k − AkZk−2Zk−1Z

−1
k−1Z

−1
k

= (Bk − AkZk−2Z
−1
k−1)Zk−1Z

−1
k .

Thus equation (42) becomes

8k,j = −Zk−1Z
−1
k 8k+1,j .

Hence equation (39) holds wheni < j . Similarly, we can show that wheni > j ,
equation (39) also holds.

Now, the only thing left is to determine8j,j . From thej th equation of (40), we have

Aj8j−1,j + Bj8j,j + Cj8j+1,j = 1. (43)

From equation (39) we have{
8j−1,j = −Zj−2Z

−1
j−18j,j

8j+1,j = −Yj+2Y
−1
j+18j,j .

(44)

Substituting equation (44) into (43), we obtain

Aj(−Zj−2Z
−1
j−18j,j )+ Bj8j,j + Cj(−Yj+2Y

−1
j+18j,j ) = 1

which is

(Bj − AjZj−2Z
−1
j−1− CjYj+2Y

−1
j+1)8j,j = I.

Thus equation (38) holds. �

Corollary 4.1. The inverse matrixA−1 = {8i,j } can be expressed as

8j,j = (Bj − AjZj−2Z
−1
j−1− CjYj+2Y

−1
j+1)

−1

wherej = 1, 2, . . . , n, A1 = 0, Cn = 0 and

8i,j =
{
(−1)j−iZi−1Z

−1
j−18j,j i < j

(−1)i−jYi+1Y
−1
j+18j,j i > j .

(45)
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5. An example (block Toeplitz case)

As a straightforward extension of theorem 4.1, we now consider the inversion of a block
matrix

T =



B C

A B C
.. .

. . .
. . .

A B C
. . .

. . .
. . .

A B C

A B


whereA, B andC arem×m matrices.

Let 31 and32 bem×m matrices such that{
31+32 = C−1B

3132 = C−1A.
(46)

Let 11 and12 bem×m matrices such that{
11+12 = A−1B

1112 = A−1C.
(47)

Define sequencesZi andYi (i = 0, . . . , n) to be

Zi =
i∑

k=0

(3i−k
2 3k

1) (48)

and

Yi =
n+1−i∑
k=0

(1n+1−i−k
2 1k

1) (49)

then we have the following result.

Theorem 5.1.The inverse of matrixT can be expressed in the following explicit way:

(T−1)j,j = (B − AZj−2Z
−1
j−1− CYj+2Y

−1
j+1)

−1 (50)

wherej = 1, 2, . . . , n and

(T−1)i,j =
{
(−1)j−iZi−1Z

−1
j−1(T

−1)j,j i < j

(−1)i−jYi+1Y
−1
j+1(T

−1)j,j i > j .
(51)

Proof. To prove the theorem, we only need to show the sequencesZi and Yi defined in
(48) and (49) satisfy the second-order block linear recurrences

CZi = BZi−1− AZi−2 i = 2, 3, . . . , n (52)

whereZ0 = I , Z1 = C−1B and

AYj = BYj+1− CYj+2 j = n− 1, n− 2, . . . ,1 (53)

whereYn+1 = I , Yn = A−1B.
From (46) and (52), we have

Zi = (31+32)Zi−1−3132Zi−2 (54)
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from which we have

Zi −32Zi−1 = 31(Zi−1−32Zi−2) = 32
1(Zi−2−32Zi−3)

= · · · = 3i−1
1 (Z1−32Z0) = 3i

1.

Thus

Zi = 32Zi−1+3i
1 i = 1, . . . , n

Zi = 3i
2+3i−1

2 31+ · · · +323
i−1
1 +3i

1 =
i∑

k=0

3i−k
2 3k

1.

Similarly, we have

Yi = 1n+1−i
2 +1n−i

2 31+ · · · +121
n−i
1 +3n+1−i

1 =
n+1−i∑
k=0

1n+1−i−k
2 1k

1.

�

Now we make some discussions about the matrix. WhenA = εC, whereε is a constant
factor, we have the following results.

Theorem 5.2.If A = εC, the inverse of the matrixT can be determined by the following
explicit formulae.

(T−1)i,j = (−1)i−j (9j

1 −9j

2)(9
n+1−i
1 −9n+1−i

2 )(91−92)
−1(9n+1

1 −9n+1
2 )−1C−1

i < j (55)

(T−1)i,j = (−ε)i−j (9i
1−9i

2)(9
n+1−j
1 −9n+1−j

2 )(91−92)
−1(9n+1

1 −9n+1
2 )−1C−1

i > j (56)

where91 and92 arem×m matrices that satisfy{
91+92 = C−1B

9192 = εI.
(57)

Proof. SinceA = εC, from (46) and (47) we have3132 = εI . Thus31 and32 commute.
Similarly 11 and12 commute. Also we have31 + 32 = ε(11 + 12) = C−1B, and
3132 = ε21112, hence

31 = ε11 = 91 32 = ε12 = 92.

Equation (48) now becomes

Zi =
i∑

k=0

3i−k
1 3k

2 = (9i+1
1 −9i+1

2 )(91−92)
−1 (58)

and (49) becomes

Yi =
n+1−i∑
k=0

1n+1−i−k
1 1k

1 = εi−n−1(9n+2−i
1 −9n+2−i

2 )(91−92)
−1. (59)
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Substituting (58) and (59) into (50), we have

(T−1)j,j = (B − AZj−2Z
−1
j−1− CYj+2Y

−1
j+1)

−1

= [B − A(9j−1
1 −9j−1

2 )(9
j

1 −9j

2)
−1

+εC(9n−j
1 −9n−j

2 )(9
n+1−j
1 −9n+1−j

2 )−1]−1

= (9j

1 −9j

2)(9
n+1−j
1 −9n+1−j

2 )[B(9j

1 −9j

2)(9
n+1−j
1 −9n+1−j

2 )

+A(9j−1
1 −9j−1

2 )(9
n+1−j
1 −9n+1−j

2 )+ A(9n−j
1 −9n−j

2 )(9
j

1 −9j

2)]
−1

= (9j

1 −9j

2)(9
n+1−j
1 −9n+1−j

2 )[B(9j

1 −9j

2)(9
n+1−j
1 −9n+1−j

2 )

+A(29n
1 + 29n

2 − (91+92)(9
n−j
1 9

j−1
2 +9n−j

2 9
j−1
1 ))]−1

= (9j

1 −9j

2)(9
n+1−j
1 −9n+1−j

2 )[B(9n+1
1 +9n+1

2 )− A(29n
1 + 29n

2 )]
−1

= (9j

1 −9j

2)(9
n+1−j
1 −9n+1−j

2 )

×[C(91+92)(9
n+1
1 +9n+1

2 )− εC(29n
1 + 29n

2 )]
−1

= (9j

1 −9j

2)(9
n+1−j
1 −9n+1−j

2 )

×[9n+2
1 +9n+2

2 − (2ε9n
1 −929

n+1
1 )− (2ε9n

2 −919
n+1
2 )]−1C−1

= (9j

1 −9j

2)(9
n+1−j
1 −9n+1−j

2 )(91−92)
−1(9n+1

1 −9n+1
2 )−1C−1. (60)

Using (58), (59) and theorem 5.1, we can obtain equation (51). �

5.1. Discussion

Based on theorem 5.2, we now discuss two special cases.

Case 1.ε = 0.
Whenε = 0, A = εC = 0. (57) becomes{

91+92 = C−1B

9192 = 0
(61)

which has solutions91 = C−1B, 92 = 0. Hence from theorem 5.2 we have

(T−1)i,j = (−1)i−j9j

19
n+1−i
1 9−1

1 9
−(n+1)
1 C−1

= (−1)i−j (C−1B)j−iB−1 i 6 j (62)

(T−1)i,j = 0 i > j. (63)

Case 2.A = C = 0.
WhenA = C = 0. the inverse matrix is extremely simple,

(T−1)i,j = B−1 i = j (64)

(T−1)i,j = 0 i 6= j. (65)

5.2. Solution of equation (57)

We now find the explicit solution of equation (57) in theorem 5.2. For simplicity, suppose
C−1B is nondefective. Letλ1, λ2, . . . , λm be the eigenvalues ofC−1B andQ be the matrix
of the eigenvectors such that

C−1B = Q diagm(λk)Q
−1 (66)
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where diagm(λk) is defined to be anm×m diagonal matrix withλk (k = 1 . . . m) being the
diagonal element. Set the solution of (57) to be

91 = Q diag(λ+k )Q
−1 (67)

92 = Q diag(λ−k )Q
−1 (68)

then we have{
λ+k + λ−k = λk
λ+k λ

−
k = ε

(69)

or in other words,λ+k andλ−k are the roots ofr2 − λkr + ε = 0. Using the same analysis
as in section 3, we have the following results.

Whenλ2
k > 4ε, we have

(λ+k )
i − (λ−k )i = 2εi/2 sinhiθk where 2ε1/2 coshθk = λk. (70)

Whenλ2
k 6 4ε, we have

(λ+k )
i − (λ−k )i = 2εi/2 siniθk where 2ε1/2 cosθk = λk. (71)

Theorem 5.3.If A = εC, the inverse of the matrixT can be determined by the following
explicit formulae.

(T−1)i,j = (−1)j−iε(j−i−1)/2Q diagm

{
sinh(jθk) sinh(n+ 1− i)θk

sinhθk sinh((n+ 1)θk)

}
Q−1C−1 i < j

(72)

(T−1)i,j = (−1)i−j ε(i−j−1)/2Q diagm

{
sinh(iθk) sinh(n+ 1− j)θk

sinhθk sinh(n+ 1)θk

}
Q−1C−1 i > j

(73)

whereQ andθk satisfy

C−1B = Q diagm{λk}Q−1 and 2ε1/2 coshθk = λk. (74)

If λ2
k 6 4ε (1 6 k 6 m), the hyperbolic sines and cosines in (72)–(74) become sines and

cosines, respectively.

Appendix A. Proof of theorem 2.1

Proof. Consider thej th column of the inverse matrixA−1, we have the equations

b1 c1

a2 b2 c2
. . .

. . .
. . .

aj bj cj
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn





φ1,j
...

φj−1,j

φj,j
φj+1,j
...

φn,j


=



0
...

0
1
0
...

0


. (A1)

For i < j , we use induction oni.
Basis step. Wheni = 1, the first equation of (A1) is

b1φ1,j + c1φ2,j = 0
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from which we have

φ1,j = −ciφ2,j

b1
= −c1

z0

z1
φ2,j .

Equation (4) holds.
Induction step. We assume equation (4) holds for alli in the interval 0< i 6 k − 1<

j − 1, then fori = k − 1, we have

φk−1,j = −ck−1
zk−2

zk−1
φk,j .

Also, from thekth equation of equations (A1), we have

akφk−1,j + bkφk,j + ckφk+1,j = 0. (A2)

Substitutingφk−1,j into equation (A2), we have

ak(−ck−1
zk−2

zk−1
)φk,j + bkφk,j + ckφk+1,j = 0

or

φk,j = −ck 1

bk − akck−1
zk−2

zk−1

φk+1,j . (A3)

From equation (1), we have
zk

zk−1
= bk − akck−1

zk−2

zk−1

thus equation (A3) becomes

φk,j = −ck zk−1

zk
φk+1,j .

Hence equation (4) holds wheni < j . Similarly, we can show that wheni > j , equation (4)
also holds.

Now, the only thing left is to determineφj,j . From thej th row of equation (A1), we
have

ajφj−1,j + bjφj,j + cjφj+1,j = 1. (A4)

From equation (4), we have
φj−1,j = −cj−1

zj−2

zj−1
φj,j

φj+1,j = −aj+1
yj+2

yj+1
φj,j .

(A5)

Substituting equation (A5) into equation (A4), we have

aj

(
−cj−1

zj−2

zj−1
φj,j

)
+ bjφj,j + cj

(
−aj+1

yj+2

yj+1
φj,j

)
= 1

which gives (
bj − aj cj−1

zj−2

zj−1
− aj+1cj

yj+2

yj+1

)
φj,j = 1.

Thus equation (3) holds. �
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Appendix B. Proof of theorem 2.2

Proof. The idea is that since onlyyi+1/yi and zi−1/zi are required in theorem 2.1, we do
not need to compute everyyj (j = n−1, . . . ,1) andzi (i = 2, . . . , n) explicitly. We denote

zi

zi−1
= ζi . (B1)

Then equation (1) becomes

ζi = bi − aici−1/ζi−1 with i = 2, . . . , n, ζ1 = z1

z0
= b1. (B2)

From (B1), (3) and (4) become

φj,j = 1

ζj − aj+1cj
yj+2

yj+1

(B3)

wherej = 1, 2, . . . , n, cn = 0 and

φi,j =


−ci
ζi
φi+1,j i < j

−ai yi+1

yi
φi−1,j i > j .

(B4)

From (2), we have

aj+1cj
yj+2

yj+1
= bj − yj

yj+1
(B5)

wherej = n− 1, n− 2, . . . ,1, yn+1 = 1 andyn = bn. If we define

γj = bj − yj

yj+1
(B6)

wherej = n− 1, . . . ,1 andγn = bn − yn/yn+1 = 0, then (B5) becomes

γj = aj+1cj

bj+1− γj+1
j = n− 1, . . . ,1. (B7)

Hence, the inverse of the matrixA can be expressed as

φj,j = 1

ζj − γj j = 1, 2, . . . , n (B8)

and

φi,j =


−ci
ζi
φi+1,j i < j

− ai

bi − γi φi−1,j i > j .
(B9)

Now, the computation of{φi,j } can be carried out in the following steps.
(i) Computeζi and ci

ζi
(i = 1, . . . , n) using equation (B2).

(ii) Computeγj and aj
bj−γj (j = n, . . . ,1) using equation (B7).

(iii) Computeφj,j (j = 1, . . . , n) using equation (B8).
(iv) Computeφi,j (i 6= j ) using equation (B9).

Computational cost.In step 1, 3(n − 1) floating point operations are required to calculate
the values ofζi (i = 1, . . . , n). Note that during the computation ofζi , we already have the
values ofci/ζi , which will be used in step 4. Similarly, 3(n− 1) arithmetic operations are
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required to obtainγj andaj/(bj − γj ) (j = n, . . . ,1). In step 3, allφj,j (j = 1, . . . , n) can
be obtained in 2n− 1 operations. Note that one operation is saved by usingγn = 0. Since
we have all the values ofci/ζi andai/(bi − γi) (i = 1∼ n), step 4 can be completed with
only n2− n floating point operations. Thus, the total cost of the method isn2+ 7n− 7.�
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